We have created this Blog and the database to provide a place where the scientific community can share and update the fast growing knowledge and data on the study of greenhouse gas CO2, CH4, and N2O fluxes in Africa.

We are grateful for the numerous researchers and technicians who provide invaluable data. It is impossible to cite all the references due to limited space allowed and we apologize for the authors whose work has not been cited.

Palm et al. 2010. Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa

Palm, C.A., Smukler, S.M., Sullivan, C.C., Mutuo, P.K., Nyadzi, G.I., Walsh, M.G., 2010. Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa. Proceedings of the National Academy of Sciences 107, 19661–19666.

Abstract

Potential interactions between food production and climate mitigation are explored for two situations in sub-Saharan Africa, where deforestation and land degradation overlap with hunger and poverty. Three agriculture intensification scenarios for supplying nitrogen to increase crop production (mineral fertilizer, herbaceous legume cover crops—green manures—and agroforestry—legume improved tree fallows) are compared to baseline food production, land requirements to meet basic caloric requirements, and greenhouse gas emissions. At low population densities and high land availability, food security and climate mitigation goals are met with all intensification scenarios, resulting in surplus crop area for reforestation. In contrast, for high population density and small farm sizes, attaining food security and reducing greenhouse gas emissions require mineral fertilizers to make land available for reforestation; green manure or improved tree fallows do not provide sufficient increases in yields to permit reforestation. Tree fallows sequester significant carbon on cropland, but green manures result in net carbon dioxide equivalent emissions because of nitrogen additions. Although these results are encouraging, agricultural intensification in sub-Saharan Africa with mineral fertilizers, green manures, or improved tree fallows will remain low without policies that address access, costs, and lack of incentives. Carbon financing for small-holder agriculture could increase the likelihood of success of Reducing Emissions from Deforestation and Forest Degradation in Developing Countries programs and climate change mitigation but also promote food security in the region.

Hickman et al. 2011. Current and future nitrous oxide emissions from African agriculture

Hickman, J.E., Havlikova, M., Kroeze, C., Palm, C.A., 2011. Current and future nitrous oxide emissions from African agriculture. Current Opinion in Environmental Sustainability 3, 370-378.

Abstract

Most emission estimates of the greenhouse gas nitrous oxide (N2O) from African agriculture at a continental scale are based on emission factors, such as those developed by the IPCC Guidelines. Here we present estimates from Africa from the EDGAR database, which is derived from the IPCC emission factors. Resulting estimates indicate that N2O emissions from agriculture represented 42% of total emissions from Africa (though that rises to 71% if all savannah and grassland burning is included), or roughly 6% of global anthropogenic N2O emissions (or 11% including burning). Emissions from African agriculture are dominated by grazing livestock; 74% of agricultural N2O excluding biomass burning was from paddocks, ranges, and pasture. Direct soil emissions represent 15% of agricultural emissions; substantial changes in direct emissions from North Africa helped drive a 47% continental increase in direct soil emissions from 1970 to 2005. Future trends based on the Millennium Ecosystem Assessment scenarios indicate that agricultural N2O emissions may double in Africa by 2050 from 2000 levels. Any regional or continental estimates for Africa are, however, necessarily limited by a paucity of direct measurements of emissions in sub-Saharan agro-ecosystems, and the heavy reliance on emission factors and other default assumptions about nitrogen cycling in African agriculture. In particular, a better understanding of livestock-related N inputs and N2O emissions will help improve regional and continental estimates. As fertilizer use increases in sub-Saharan Africa, emission estimates should consider several unusual elements of African agriculture: farmer practices that differ fundamentally from that of large scale farms, the long history of N depletion from agricultural soils, seasonal emission pulses, and emission factors that vary with the amount of N added.