We have created this Blog and the database to provide a place where the scientific community can share and update the fast growing knowledge and data on the study of greenhouse gas CO2, CH4, and N2O fluxes in Africa.

We are grateful for the numerous researchers and technicians who provide invaluable data. It is impossible to cite all the references due to limited space allowed and we apologize for the authors whose work has not been cited.

Valentini et al., 2014. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities

Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti, R., Chevallier, F., Ciais, P., Grieco, E., Hartmann, J., Henry, M., 2014. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences 11, 381-407.

Abstract
This paper, developed under the framework of the RECCAP initiative, aims at providing improved estimates of the carbon and GHG (CO2, CH4 and N2O) balance of continental Africa. The various components and processes of the African carbon and GHG budget are considered, existing data reviewed, and new data from different methodologies (inventories, ecosystem flux measurements, models, and atmospheric inversions) presented. Uncertainties are quantified and current gaps and weaknesses in knowledge and monitoring systems described in order to guide future requirements. The majority of results agree that Africa is a small sink of carbon on an annual scale, with an average value of −0.61±0.58 PgC yr−1. Nevertheless, the emissions of CH4 and N2O may turn Africa into a net source of radiative forcing in CO2 equivalent terms. At sub-regional level, there is significant spatial variability in both sources and sinks, due to the diversity of biomes represented and differences in the degree of anthropic impacts. Southern Africa is the main source region; while central Africa, with its evergreen tropical forests, is the main sink. Emissions from land-use change in Africa are significant (around 0.32±0.05 PgC yr−1), even higher than the fossil fuel emissions: this is a unique feature among all the continents. There could be significant carbon losses from forest land even without deforestation, resulting from the impact of selective logging. Fires play a significant role in the African carbon cycle, with 1.03±0.22 PgC yr−1 of carbon emissions, and 90% originating in savannas and dry woodlands. A large portion of the wild fire emissions are compensated by CO2 uptake during the growing season, but an uncertain fraction of the emission from wood harvested for domestic use is not. Most of these fluxes have large interannual variability, on the order of ±0.5 PgC yr−1 in standard deviation, accounting for around 25% of the year-toyear variation in the global carbon budget. Despite the high uncertainty, the estimates provided in this paper show the important role that Africa plays in the global carbon cycle, both in terms of absolute contribution, and as a key source of interannual variability.

Nyamadzawo et al., 2014. Nitrous oxide and methane emissions from cultivated seasonal wetland (dambo) soils with inorganic, organic and integrated nutrient management

Nyamadzawo, G., Wuta, M., Nyamangara, J., Smith, J., Rees, R., 2014. Nitrous oxide and methane emissions from cultivated seasonal wetland (dambo) soils with inorganic, organic and integrated nutrient management. Nutrient Cycling in Agroecosystems 100, 161-175.

Abstract
In many smallholder farming areas southern Africa, the cultivation of seasonal wetlands (dambos) represent an important adaptation to climate change. Frequent droughts and poor performance of rain-fed crops in upland fields have resulted in mounting pressure to cultivate dambos where both organic and inorganic amendments are used to sustain crop yields. Dambo cultivation potentially increases greenhouse gas (GHG) emissions. The objective of the study was to quantify the effects of applying different rates of inorganic nitrogen (N) fertilisers (60, 120, 240 kg N ha−1) as NH4NO3, organic manures (5,000, 10,000 and 15,000 kg ha−1) and a combination of both sources (integrated management) on GHG emissions in cultivated dambos planted to rape (Brassica napus). Nitrous oxide (N2O) emissions in plots with organic manures ranged from 218 to 894 µg m−2 h−1, while for inorganic N and integrated nutrient management, emissions ranged from 555 to 5,186 µg m−2 h−1 and 356–2,702 µg m−2 h−1 respectively. Cropped and fertilised dambos were weak sources of methane (CH4), with emissions ranging from −0.02 to 0.9 mg m−2 h−1, while manures and integrated management increased carbon dioxide (CO2) emissions. However, crop yields were better under integrated nutrient management. The use of inorganic fertilisers resulted in higher N2O emission per kg yield obtained (6–14 g N2O kg−1 yield), compared to 0.7–4.5 g N2O kg−1 yield and 1.6–4.6 g N2O kg−1 yield for organic manures and integrated nutrient management respectively. This suggests that the use of organic and integrated nutrient management has the potential to increase yield and reduce yield scaled N2O emissions.

Masaka et al., 2014. Nitrous oxide emissions from wetland soil amended with inorganic and organic fertilizers

Masaka, J., Nyamangara, J., Wuta, M., 2014. Nitrous oxide emissions from wetland soil amended with inorganic and organic fertilizers. Archives of Agronomy and Soil Science 60, 1363-1387.

Abstract
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha−1 (control), 100 kg N fertilizer + 15 Mg manure ha−1 and 200 kg N fertilizer + 30 Mg manure ha−1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands.

Fan et al., 2014. Modeling pulsed soil respiration in an African savanna ecosystem.

Fan, Z., Neff, J.C., Hanan, N.P., 2014. Modeling pulsed soil respiration in an African savanna ecosystem. Agricultural and Forest Meteorology 200, 282-292.

Abstract
Savannas cover 60% of the African continent and play an important role in the global carbon (C) emissions from fire and land use. To better characterize the biophysical controls over soil respiration in these settings, half-hourly observations of volumetric soil–water content, temperature, and the concentration of carbon dioxide (CO2) at different soil depths were continually measured from 2005 to 2007 under trees (“sub-canopy”) and between trees (“inter-canopy”) in a savanna vegetation near Skukuza, Kruger National Park, South Africa. The measured soil climate and CO2 concentration data were assimilated into a process-based model that estimates the CO2 production and flux with coupled dynamics of dissolved organic C (DOC) and microbial biomass C. Our results show that temporal and spatial variations in CO2 flux were strongly influenced by precipitation and vegetation cover, with two times greater CO2 flux in the sub-canopy plots (∼2421 g CO2 m−2 yr−1) than in the inter-canopy plots (∼1290 g CO2 m−2 yr−1). Precipitation influenced soil respiration by changing soil temperature and moisture; however, our modeling analysis suggests that the pulsed response of soil respiration to precipitation events (known as “Birch effect”) is a key control on soil fluxes at this site. At this site, “Birch effect” contributed to approximately 50% and 65% of heterotrophic respiration or 20% and 39% of soil respiration in the sub-canopy and inter-canopy plots, respectively. These results suggest that pulsed response of respiration to precipitation events is an important component of the C cycle of savannas and should be considered in both measurement and modeling studies of carbon exchange in similar ecosystems.

Teodoru et al. 2015. Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget.

Teodoru, C.R., Nyoni, F.C., Borges, A.V., Darchambeau, F., Nyambe, I., Bouillon, S., 2015. Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12, 2431-2453.

Abstract
Spanning over 3000 km in length and with a catchment of approximately 1.4 million km2, the Zambezi River is the fourth largest river in Africa and the largest flowing into the Indian Ocean from the African continent. We present data on greenhouse gas (GHG: carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) concentrations and fluxes, as well as data that allow for characterization of sources and dynamics of carbon pools collected along the Zambezi River, reservoirs and several of its tributaries during 2012 and 2013 and over two climatic seasons (dry and wet) to constrain the interannual variability, seasonality and spatial heterogeneity along the aquatic continuum. All GHG concentrations showed high spatial variability (coefficient of variation: 1.01 for CO2, 2.65 for CH4 and 0.21 for N2O). Overall, there was no unidirectional pattern along the river stretch (i.e., decrease or increase towards the ocean), as the spatial heterogeneity of GHGs appeared to be determined mainly by the connectivity with floodplains and wetlands as well as the presence of man-made structures (reservoirs) and natural barriers (waterfalls, rapids). Highest CO2 and CH4 concentrations in the main channel were found downstream of extensive floodplains/wetlands. Undersaturated CO2 conditions, in contrast, were characteristic of the surface waters of the two large reservoirs along the Zambezi mainstem. N2O concentrations showed the opposite pattern, being lowest downstream of the floodplains and highest in reservoirs. Among tributaries, highest concentrations of both CO2 and CH4 were measured in the Shire River, whereas low values were characteristic of more turbid systems such as the Luangwa and Mazoe rivers. The interannual variability in the Zambezi River was relatively large for both CO2 and CH4, and significantly higher concentrations (up to 2-fold) were measured during wet seasons compared to the dry season. Interannual variability of N2O was less pronounced, but higher values were generally found during the dry season. Overall, both concentrations and fluxes of CO2 and CH4 were well below the median/average values for tropical rivers, streams and reservoirs reported previously in the literature and used for global extrapolations. A first-order mass balance suggests that carbon (C) transport to the ocean represents the major component (59%) of the budget (largely in the form of dissolved inorganic carbon, DIC), while 38% of the total C yield is annually emitted into the atmosphere, mostly as CO2 (98%), and 3% is removed by sedimentation in reservoirs.