We have created this Blog and the database to provide a place where the scientific community can share and update the fast growing knowledge and data on the study of greenhouse gas CO2, CH4, and N2O fluxes in Africa.

We are grateful for the numerous researchers and technicians who provide invaluable data. It is impossible to cite all the references due to limited space allowed and we apologize for the authors whose work has not been cited.

Masaka et al., 2014. Nitrous oxide emissions from wetland soil amended with inorganic and organic fertilizers

Masaka, J., Nyamangara, J., Wuta, M., 2014. Nitrous oxide emissions from wetland soil amended with inorganic and organic fertilizers. Archives of Agronomy and Soil Science 60, 1363-1387.

Abstract
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha−1 (control), 100 kg N fertilizer + 15 Mg manure ha−1 and 200 kg N fertilizer + 30 Mg manure ha−1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands.

No comments:

Post a Comment